取整函数的性质

我们通常将y=[x]y=[x]y=xy=\lfloor x \rfloor记作关于xx取整函数,也称为高斯函数,其意义是不超过x的最大整数

Lemma 0:\text{Lemma 0:}

bb<b+1\lfloor b \rfloor \le b<\lfloor b \rfloor+1

Lemma 1:\text{Lemma 1:}

aZ,bRa\in Z,b\in R

ababa\le\lfloor b \rfloor \Leftrightarrow a\le b

Proof:\texttt{Proof:}

ab,bbaba\le\lfloor b \rfloor,\lfloor b \rfloor\le b \Rightarrow a\le b

aba<b+1aba\le b \Rightarrow a<\lfloor b \rfloor+1 \Leftrightarrow a\le \lfloor b \rfloor

(整数的离散性:x,yZ,x<yxy1x,y\in Z,x<y\Leftrightarrow x\le y-1)

Lemma 2:\text{Lemma 2:}

x,yZx,y\in Z

xnyynxx\le \lfloor \frac{n}{y} \rfloor\Leftrightarrow y\le\lfloor \frac{n}{x} \rfloor

Proof:\texttt{Proof:}

By lemma1:xnyxnyynxynx\text{By lemma1:}x\le\lfloor \frac{n}{y} \rfloor\Leftrightarrow x\le \frac{n}{y} \Leftrightarrow y\le\frac{n}{x}\Leftrightarrow y\le \lfloor \frac{n}{x} \rfloor

Proposition 3:\text{Proposition 3:}

x,nZx,n\in Z

xnnxx\le\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor

Proof:\texttt{Proof:}

By lemma2: xnnxnxnx\text{By lemma2: }x\le\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor\Leftrightarrow\lfloor\frac{n}{x}\rfloor\le\lfloor\frac{n}{x}\rfloor

Theorem 4:\text{Theorem 4:}

xZ,nnnx=nxx\in Z,\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\rfloor=\lfloor\frac{n}{x}\rfloor

Proof:\texttt{Proof:}

By prosition3: nxnnnx(1),xnnx\text{By prosition3: }\lfloor\frac{n}{x}\rfloor\le\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\rfloor--(1),x\le\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor

nxnnnxnnnx\Rightarrow\frac{n}{x}\ge\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\ge\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\rfloor

By lamma1: nnnxnx(2)\text{By lamma1: }\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\rfloor\le\lfloor\frac{n}{x}\rfloor--(2)

(1) and (2)nnnx=nx(1)\text{ and }(2)\Rightarrow\lfloor\frac{n}{\lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor}\rfloor=\lfloor\frac{n}{x}\rfloor

Corollary 5:\text{Corollary 5:}

yZ+,max{xZ+nx=ny}=nnyy\in Z_+,\max\left\{x\in Z_+|\lfloor\frac{n}{x}\rfloor=\lfloor\frac{n}{y}\rfloor\right\}=\lfloor\frac{n}{\lfloor\frac{n}{y}\rfloor}\rfloor

Proof:\texttt{Proof:}

xZ+,that nx=ny\forall x\in Z_+ ,\text{that } \lfloor\frac{n}{x}\rfloor=\lfloor\frac{n}{y}\rfloor

By proposition3: xnnx=nni\text{By proposition3: }x \le \lfloor\frac{n}{\lfloor\frac{n}{x}\rfloor}\rfloor=\lfloor\frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor